TS
全球首个化学反应AI「考场」,7种MLIPs模型与SOTA生成式模型同场PK
编辑 | ScienceAI过渡态(Transition State, TS)是化学反应的「关键帧」,就像群山中的最低隘口,决定了分子翻山越岭所需的能量和路径。 然而,TS 的寿命仅有飞秒级(10⁻¹⁵ 秒),实验观测如同捕捉闪电一瞬——目前只能依赖量子化学计算来寻找。 传统的密度泛函理论(DFT)虽能提供高精度结果,但单次 TS 搜索可能消耗数十至数千 CPU 时,面对成百上千反应节点的复杂网络,计算成本高得难以承受。
3/14/2025 3:22:00 PM
ScienceAI
优于3D模型,成功率达90.6%,基于扩散的生成式AI从2D分子图探索过渡态
TSDiff 预测分布的概念说明。(来源:论文)编辑 | X过渡态(TS)探索对于阐明化学反应机制和动力学建模至关重要。最近,机器学习模型在 TS 几何形状(geometries)预测方面表现出了卓越的性能。然而,它们通常需要反应物和产物的 3D 构象,并以其适当的方向作为输入,这需要大量的努力和计算成本。近日,韩国科学技术院(KAIST)的研究人员提出了一种基于随机扩散方法的生成方法,即 TSDiff,用于仅从 2D 分子图预测 TS 几何形状。TSDiff 在准确性和效率方面均优于现有的具有 3D 几何形状的
1/11/2024 5:27:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
AI新词
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
华为
大语言模型
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
编程
DeepMind
亚马逊
特斯拉
AI模型