TF-IDF
【RAG】RAG范式演进及Agentic-RAG总结综述
RAG的核心思想是通过实时数据检索弥补这一缺陷——在生成答案前,系统先从外部数据源(如数据库、API或互联网)动态检索相关上下文,再结合LLM的知识生成更精准、实时的响应。 但它们通常在处理动态、多步推理任务、适应性和复杂工作流的协调方面仍然存在不足。 rag三大组件检索器(Retriever):从外部数据源(如向量数据库、知识图谱或网页)中搜索与查询相关的信息。
2/6/2025 1:50:06 PM
余俊晖
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
AI模型