Test-Time Training
连OpenAI都推不动Scaling Law了?MIT把「测试时训练」系统研究了一遍,发现还有路
昨天,The Information 的一篇文章让 AI 社区炸了锅。 这篇文章透露,OpenAI 下一代旗舰模型的质量提升幅度不及前两款旗舰模型之间的质量提升,因为高质量文本和其他数据的供应量正在减少,原本的 Scaling Law(用更多的数据训练更大的模型)可能无以为继。 此外,OpenAI 研究者 Noam Brown 指出,更先进的模型可能在经济上也不具有可行性,因为花费数千亿甚至数万亿美元训练出的模型会很难盈利。
11/12/2024 1:15:00 PM
机器之心
彻底改变语言模型:全新架构TTT超越Transformer,ML模型代替RNN隐藏状态
从 125M 到 1.3B 的大模型,性能都有提升。难以置信,这件事终于发生了。一种全新的大语言模型(LLM)架构有望代替至今在 AI 领域如日中天的 Transformer,性能也比 Mamba 更好。本周一,有关 Test-Time Training(TTT)的论文成为了人工智能社区热议的话题。论文链接:、加州大学伯克利分校、加州大学圣迭戈分校和 Meta。他们设计了一种新架构 TTT,用机器学习模型取代了 RNN 的隐藏状态。该模型通过输入 token 的实际梯度下降来压缩上下文。该研究作者之一 Karan
7/10/2024 11:20:00 AM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP