特征选择
终于把机器学习中的特征选择搞懂了!!
特征选择是机器学习中的一个重要过程,通过选择与目标变量最相关的特征,剔除冗余或无关的特征,从而提高模型的性能、减少训练时间,并降低过拟合的风险。 常见的特征选择方法有:过滤方法、包装方法和嵌入方法过滤方法过滤方法是一种基于统计特性和独立于模型的特征选择技术。 它通过计算特征与目标变量之间的相关性或其他统计指标来评估特征的重要性。
1/20/2025 9:21:00 AM
程序员小寒
- 1
资讯热榜
智谱AI全新企业级超级助手Agent CoCo正式上线
苹果发布全新Xcode 26开发者工具:内置ChatGPT先进AI功能
豆包App“一句话P图”功能全新升级 基于SeedEdit 3.0实现全面优化
DeepSeek前高管秘密创业,新AI Agent项目已获顶级VC押注
Google AI Studio 政策变动:Gemini2.5Pro 模型免费访问遭“限流”
那个男人回来了!Ilya现身多伦多大学毕业典礼:AI 像是用数字方式复制出来的大脑!不管你愿不愿意,AI都将深刻影响你的一生!
苹果向开发者开放本地AI能力,推出全新Foundation Models框架
支持MCP!开源智能体开发框架 Rowboat:打造你的智能助手只需几分钟
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
AI设计
Claude
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
Transformer
LLM
字节跳动
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构