SSIM
「扩散模型+多模态提示」精准增强皮肤病变分割,超越GAN,SSIM提升9%,Dice提升5%!
一眼概览该论文提出了一种基于扩散模型的医学影像生成方法,结合视觉和文本提示,以精准控制皮肤镜病变图像的生成,提升皮肤病变的分割性能。 实验结果显示,该方法比传统GAN生成方法在图像质量(SSIM提升9%)和分割性能(Dice系数提升5%)上均有显著改进。 核心问题问题背景医学影像分析受限于公开数据集稀缺及高质量标注成本高,数据增强方法(如GAN)虽能扩充数据,但难以精准控制病变类型、位置及属性,导致对下游任务(如病变分割)的提升有限。
2/4/2025 9:42:47 AM
萍哥学AI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测