SMILES
化学逆合成SOTA!上海交大团队提出SMILES对齐技术实现高效逆合成预测
编辑 | ScienceAI逆合成规划在药物研发中扮演着至关重要的角色,而单步逆合成预测更是这一过程的核心。通过运用Transformer等先进的序列模型,将单步逆合成预测问题转化为从产物SMILES表示到反应物SMILES表示的翻译任务,已经成为一种广泛采用且效果显著的策略。然而,这种方法往往忽略了一个关键点:在反应物和产物之间,存在大量可以被直接利用的相同子结构。对这些子结构利用的不充分限制了模型预测的效率和准确性。2024年7月,上海交通大学人工智能研究院金耀辉、许岩岩研究团队在《Journal of Che
7/30/2024 3:00:00 PM
ScienceAI
分子100%有效,从头设计配体,湖南大学提出基于片段的分子表征框架
编辑 | KX分子描述符广泛应用于分子建模,但在 AI 辅助分子发现领域,缺乏自然适用、完整且「原始」的分子表征是一个挑战,影响 AI 模型的性能和可解释性。在使用先进的自然语言处理(NLP)方法解决化学问题时,会出现两个基本问题:(1)什么是「化学词」?(2)如何将它们编码为「化学句子」?近日,湖南大学研究团队提出了一种灵活的、基于片段的多尺度分子表征框架 t-SMILES 的框架来解决第二个问题。该框架使用 SMILES 类型的字符串描述分子,并且可以将基于序列的模型作为主要生成模型。t-SMILES 具有三种
7/5/2024 2:44:00 PM
ScienceAI
优于SOTA方法,语言模型结合几何深度学习技术,望石智慧开发3D分子生成模型Lingo3DMol
编辑 | X分子生成是 AI 助力小分子新药研发的核心技术。望石智慧始终专注于分子生成技术的开发。就在前几天,望石智慧的研究团队推出了 Lingo3DMol,用于在给定口袋 3D 结构的情况下生成小分子配体的 3D 结构。方法结合了语言模型和几何深度学习技术。研究人员在传统的 SMILES 分子表征的基础上,开发了新的分子表示方法 FSMILES。此外,研究训练了一个单独的非共价相互作用预测器,为生成模型提供必要的结合模式信息。Lingo3DMol 可以有效地穿越类似药物的化学空间,防止异常结构的形成。Lingo
1/22/2024 5:44:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用