实例自适应缩放
MIT 推出新方法,显著提升大型语言模型计算效率
MIT 的研究团队近日发布了一项创新的计算方法,旨在提高大型语言模型(LLM)的运算效率,同时降低能源消耗。 这项名为实例自适应缩放的技术,可以根据提问的复杂程度调整计算资源。 研究小组的相关论文于11月初发布,得到了 MIT-IBM 沃森人工智能实验室、MIT-Amazon 科学中心、MIT-Google 计算创新项目以及 MathWorks 的支持。
12/9/2025 3:56:00 PM
AI在线
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
开发者
具身智能
xAI
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测