时间序列预测
2亿参数时序模型替代LLM?谷歌突破性研究被批「犯新手错误」
照箭画靶,跑分自设标准?最近,谷歌的一篇论文在 X 等社交媒体平台上引发了一些争议。这篇论文的标题是「A decoder-only foundation model for time-series forecasting(用于时间序列预测的仅解码器基础模型)」。简而言之,时间序列预测就是通过分析历史数据的变化趋势和模式,来预测未来的数据变化。这类技术在气象预报、交通流量预测、商业销售等领域有着广泛的应用。例如,在零售业中,提高需求预测的准确性可以有效降低库存成本并增加收入。近年来,深度学习模型已成为预测丰富的多变量
2/5/2024 2:56:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
代码
LLM
算法
Stable Diffusion
芯片
腾讯
苹果
AI for Science
Agent
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
研究
人形机器人
生成
AI视频
百度
工具
RAG
大语言模型
Sora
华为
GPU
计算
具身智能
AI设计
字节跳动
搜索
大型语言模型
AGI
场景
深度学习
视频生成
架构
预测
视觉
伟达
DeepMind
Transformer
编程
神器推荐
AI模型
亚马逊
MCP