山东大学
活性提升65倍,山大新AI工具定向进化高活性酶,外部数据集验证成功率达80%
编辑丨&准确预测酶动力学参数对于酶的探索和修饰至关重要,但现有模型面临过拟合导致准确率低或泛化能力差的问题。 以山东大学为主导的团队提出了一种基于预训练模型和分子指纹的深度学习模型 CataPro ,并用它来预测转换数(k(cat))、米歇尔常数(K(m))和催化效率(k(cat)/K(m))。 与以前的基线模型相比,CataPro 在无偏数据集上表现出明显增强的准确性和泛化能力。
3/26/2025 2:10:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用