scSemiProfiler
更高分辨率,更经济,深度生成模型与主动学习策略结合,推进大规模单细胞研究
编辑 | 萝卜皮单细胞测序是分析复杂疾病细胞复杂性的重要工具。然而,其高昂的成本阻碍了其在广泛的生物医学研究中的应用。传统的细胞反卷积方法可以从更便宜的批量测序数据中推断出细胞类型比例,但它们无法提供单细胞水平分析所需的精细分辨率。为了克服这一挑战,加拿大麦吉尔大学(McGill University)的研究人员引入了「scSemiProfiler」,这是一个创新的计算框架,将深度生成模型与主动学习策略结合在一起。该方法具有高度精确性,能推断出大群体中的单细胞概况。可与真实的单细胞分析数据紧密结合,支持精细的细胞分
9/3/2024 7:10:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉