S3FT
S3FT选择性自监督微调:通过智能选择训练样本提升大模型整体表现
选择性自我监督微调(Selective Self-to-Supervised Fine-Tuning,S3FT)是一种创新的大语言模型微调方法,该方法通过部署专门的语义等价性判断器来识别训练集中模型自身生成的正确响应。 在微调过程中,S3FT策略性地结合这些正确响应与剩余样本的标准答案(或其释义版本)来优化模型。 与传统监督微调(SFT)相比,S3FT不仅在特定任务上表现出更优的性能,还显著提升了模型的跨域泛化能力。
3/10/2025 10:24:04 AM
佚名
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
蛋白质
具身智能
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
字节跳动
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉