RPG
通过奖励随机化发现多智能体游戏中多样性策略行为,清华、UC伯克利等研究者提出全新算法RPG
在这篇论文中,研究者提出了一个在 reward-space 进行探索的新算法 RPG(Reward-Randomized Policy Gradient),并且在存在多个纳什均衡 (Nash Equilibrium, NE) 的挑战性的多智能任务中进行了实验验证,实验结果表明,RPG 的表现显著优于经典的 policy/action-space 探索的算法,并且发现了很多有趣的、人类可以理解的智能体行为策略。除此之外,论文进一步提出了 RPG 算法的扩展:利用 RR 得到的多样性策略池训练一个新的具备自适应能力的策
3/11/2021 2:46:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP