溶解度
比手动快13倍多,「机器人+AI」发现电池最佳电解质,加速材料研究
编辑 | 紫罗传统的材料研发模式主要依赖「试错」的实验方法或偶然性的发现,其研发过程一般长达 10-20 年。虽然基于机器学习 (ML) 的数据驱动方法可以加速清洁能源技术新材料的设计,但由于缺乏大型高保真实验数据库,其在材料研究中的实际应用仍然受到限制。近日,美国西北太平洋国家实验室和阿贡国家实验室的研究团队,设计了一个高度自动化的工作流程,将高通量实验平台与最先进的主动学习算法相结合,可有效筛选对阳极电解质具有最佳溶解度的二元有机溶剂。除了设计用于开发高性能氧化还原液流电池的高效工作流程之外,该机器学习引导的高
4/10/2024 11:53:00 AM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP