RL for VLM
从零搭一套可复现、可教学、可观察的RL for VLM训练流程,我们试了试
自 Deepseek-R1 发布以来,研究社区迅速响应,纷纷在各自任务中复现 R1-moment。 在过去的几个月中,越来越多的研究尝试将 RL Scaling 的成功应用扩展到视觉语言模型(VLM)领域 —— 刷榜、追性能、制造 “Aha Moment”,整个社区正高速奔跑,RL for VLM 的边界也在不断被推远。 但在这样一个节奏飞快、聚焦结果的研究环境中,基础设施层面的透明性、评估的一致性,以及训练过程的可解释性,往往被忽视。
4/9/2025 11:24:00 AM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
论文
英伟达
Anthropic
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
LLM
生成式
苹果
Claude
Agent
AI新词
神经网络
3D
AI for Science
机器学习
研究
生成
xAI
人形机器人
AI视频
计算
Sora
GPU
AI设计
百度
华为
工具
大语言模型
搜索
具身智能
场景
RAG
字节跳动
大型语言模型
预测
深度学习
伟达
视觉
Transformer
视频生成
AGI
神器推荐
亚马逊
架构
Copilot
DeepMind
应用
安全