Reuse and Diffuse
复旦大学联合华为诺亚提出VidRD框架,实现迭代式的高质量视频生成
本文提出了一个名为 “Reuse and Diffuse” 的框架。该框架可以在 LDM 已经生成的少部分视频帧之后,产生更多的视频帧,从而实现迭代式地生成更长、更高质量以及多样化的视频内容。复旦大学联合华为诺亚方舟实验室的研究者基于图像扩散模型(LDM)提出了一种迭代式生成高质量视频的方案 ——VidRD (Reuse and Diffuse)。该方案旨在对生成视频的质量和序列长度上进行突破,实现了高质量、长序列的可控视频生成。有效减少了生成视频帧间的抖动问题,具有较高的研究和实用价值,为当前火热的AIGC社区贡
10/20/2023 2:51:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
大语言模型
生成
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
特斯拉
亚马逊