人工标注
LLM 的 SFT 与 RL:差异几何?
在大型语言模型(LLM)的训练领域,监督微调(SFT)和强化学习(RL)是两种备受瞩目的训练策略。 尽管它们各自有着独特的机制和侧重点,但笔者经过深入研究和实践观察发现,二者之间的差别并非如表面上那般显著,以下是具体的分析与对比。 一、核心原理的相近性SFT 的本质 :SFT 主要是利用标注好的数据集对预训练的 LLM 进行进一步训练,通过最小化模型输出与标注答案之间的差异,来调整模型的参数。
6/6/2025 4:10:00 AM
小智
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用