人工标注
LLM 的 SFT 与 RL:差异几何?
在大型语言模型(LLM)的训练领域,监督微调(SFT)和强化学习(RL)是两种备受瞩目的训练策略。 尽管它们各自有着独特的机制和侧重点,但笔者经过深入研究和实践观察发现,二者之间的差别并非如表面上那般显著,以下是具体的分析与对比。 一、核心原理的相近性SFT 的本质 :SFT 主要是利用标注好的数据集对预训练的 LLM 进行进一步训练,通过最小化模型输出与标注答案之间的差异,来调整模型的参数。
6/6/2025 4:10:00 AM
小智
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
AI新词
图像
Gemini
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
具身智能
AI设计
字节跳动
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型