ReliableMath
面对无解问题大模型竟会崩溃?港中文&华为联合提出首个大模型推理可靠性评估基准
本文作者是香港中文大学博士三年级薛博阳,导师为黄锦辉教授,目前在伦敦大学学院进行访问交流,他的研究方向包括可信大模型,模型不确定性,对话系统等,在 ACL, EMNLP, TASLP 等会议期刊作为第一作者发表多篇论文,并长期在知乎写作大模型、机器学习等专栏文章,个人主页为:? 今年初以 DeepSeek-r1 为代表的大模型在推理任务上展现强大的性能,引起广泛的热度。 然而在面对一些无法回答或本身无解的问题时,这些模型竟试图去虚构不存在的信息去推理解答,生成了大量的事实错误、无意义思考过程和虚构答案,也被称为模型「幻觉」 问题,如下图(a)所示,造成严重资源浪费且会误导用户,严重损害了模型的可靠性(Reliability)。
7/16/2025 4:25:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
生成
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
亚马逊
视觉
Transformer
AI模型
预测
特斯拉
MCP