全光
超快、超低能耗!北大团队提出基于卷积神经网络的全光计算
编辑/凯霞随着先进工程计算、经济数据分析和云计算的快速发展,对超高速和高能效计算的需求呈指数级增长。现有的冯诺依曼架构下的传统电子信号处理器难以同时实现高速和低能耗。使用光子作为信息载体是一种很有前景的选择。由于传统材料的三阶非线性光学较弱,在传统冯诺依曼架构下构建集成光子计算芯片一直是一个挑战。近日,由北京大学物理学院龚旗煌研究团队提出了一种基于卷积神经网络(CNN)实现超快超低能耗全光计算芯片方案的新策略,支持多计算任务的执行。这项工作为下一代全光计算系统指明了方向。该研究以「All-optical compu
12/15/2021 1:36:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用