全光
超快、超低能耗!北大团队提出基于卷积神经网络的全光计算
编辑/凯霞随着先进工程计算、经济数据分析和云计算的快速发展,对超高速和高能效计算的需求呈指数级增长。现有的冯诺依曼架构下的传统电子信号处理器难以同时实现高速和低能耗。使用光子作为信息载体是一种很有前景的选择。由于传统材料的三阶非线性光学较弱,在传统冯诺依曼架构下构建集成光子计算芯片一直是一个挑战。近日,由北京大学物理学院龚旗煌研究团队提出了一种基于卷积神经网络(CNN)实现超快超低能耗全光计算芯片方案的新策略,支持多计算任务的执行。这项工作为下一代全光计算系统指明了方向。该研究以「All-optical compu
12/15/2021 1:36:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind