PSICHIC
Nature子刊,准确率达96%,AI从序列中预测蛋白-配体互作
编辑 | 萝卜皮在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。莫纳什大学(Monash University)和格里菲斯大学(Griffith University)的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹(fingerprints)。这使
7/4/2024 3:41:00 PM
ScienceAI
准确率达0.96,从序列中预测蛋白-配体互作的物理化学约束图神经网络
编辑 | 萝卜皮在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。莫纳什大学(Monash University)和格里菲斯大学(Griffith University)的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹(fingerprints)。这使
6/28/2024 2:21:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP