ProBind
预测精度达93%,个人电脑可部署,科学家开发Transformer新方法预测结合蛋白
编辑丨&结合蛋白通过与特定分子(如 DNA、RNA 或肽)选择性相互作用来调节各种细胞过程,它们能以高特异性识别和结合靶分子,这使得它们在信号传导、转运和酶活性功能上有着至关重要的地位。 当前,用于鉴定蛋白质结合肽的传统方法效率低下且性价比极低,而基于序列的方法因过于狭隘地关注近端序列特征而忽略了结构数据,导致没有一种良好的方式进行结合蛋白预测。 阿富汗呼罗珊大学(Khurasan University)领导了一项研究,推出一款名为 Deep-ProBind 的强大预测模型,旨在通过整合序列和结构信息对蛋白质结合位点进行分类。
4/2/2025 2:06:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind