PPI
可重用性报告:使用图神经网络捕获生物对象的属性及其关系
编辑 | 萝卜皮图神经网络(GNN),尤其是图卷积网络(GCN),已越来越多地用于对复杂交互进行建模。GNN 背后的一个基本思想是,对象的某些属性(由图中的节点表示)由与其直接或间接交互的对象的属性反映,其中直接交互由图中的边表示。在生物医学中,GNN 已被用于各种应用,例如预测蛋白质功能和药物-疾病关联。之前,Schulte-Sasse 团队提出了 GCN 在生物医学中的新用途:识别癌症基因。他们的方法 EMOGI(可解释的多组学图集成)通过在蛋白质-蛋白质相互作用(PPI)网络上聚合信息来集成多组数据。综合信息
3/28/2022 6:44:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用