Position Encoding
Transformer的无限之路:位置编码视角下的长度外推综述
在自然语言处理(Natural Language Processing,NLP)领域,Transformer 模型因其在序列建模中的卓越性能而受到广泛关注。然而,Transformer 及在其基础之上的大语言模型(Large Language Models,LLMs)都不具备有效长度外推(Length Extrapolation)的能力。这意味着,受限于其训练时预设的上下文长度限制,大模型无法有效处理超过该长度限制的序列。文本续写和语言延展是人类语言的核心能力之一,与之相对的,长度外推是语言模型智能进化的重要方向,
1/15/2024 4:06:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
AI新词
Meta
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
AI for Science
Agent
苹果
芯片
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
具身智能
生成
百度
Sora
工具
GPU
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
生成式AI
深度学习
架构
DeepMind
亚马逊
编程
特斯拉
视觉
Transformer
AI模型
预测
MCP