PMDM
优于SOTA,腾讯AI Lab开发双重扩散模型,实现靶标配体3D分子生成和先导化合物优化
编辑 | 萝卜皮基于结构的生成化学,通过探索广阔的化学空间来设计对靶标具有高结合亲和力的配体,在计算机辅助药物发现中至关重要。然而,传统的计算机方法受到计算效率低下的限制,机器学习方法则因自回归采样而面临瓶颈。为了解决这些问题,腾讯 AI lab、香港城市大学、锐格医药(Regor Therapeutics Group)的研究人员开发了一种条件深度生成模型 PMDM,用于生成适合特定靶标的 3D 分子。PMDM 由具有局部和全局分子动力学的条件等变扩散模型组成,使 PMDM 能够考虑条件蛋白质信息从而有效地生成分子
3/29/2024 6:15:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
开发者
xAI
具身智能
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
生成式AI
视频生成
场景
DeepMind
特斯拉
深度学习
AI模型
架构
亚马逊
Transformer
MCP
编程
视觉
预测