NTA
准确率达 80%,深度学习识别布朗运动中纳米粒子形状
编辑 | 绿萝随着纳米粒子在医疗、制药和工业领域的实际应用。从材料的角度出发,需要对每个纳米粒子的性质和团聚状态进行评价并进行质量控制。评估液体中纳米粒子的一种方法是分析布朗运动的轨迹。虽然纳米粒子跟踪分析技术(Nano-tracking analysis,NTA) 是一种用于测量从微观到纳米尺度的单个粒子的简单方法,但它不能评估纳米粒子的形状一直是一个长期存在的问题。NTA 在使用 Stokes-Einstein 方程量化粒子大小时总是假设球形,但无法验证所测量的粒子是否真的是球形的。东京大学的研究团队提出了一种
11/7/2023 3:45:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用