NLU
基于 DSPy 与 Pydantic 的自然语言参数提取框架(含code)
一、参数提取的重要性在人工智能驱动的现代应用中,自然语言交互已成为用户与系统沟通的主要方式。 从智能助手执行日程安排到企业级工作流自动化系统处理复杂指令,将“星期二下午2点与萨拉创建关于预算的会议”这类对话式命令转化为可执行的结构化参数,是实现人机高效交互的关键环节。 然而,随着用户指令复杂度的提升,传统的正则表达式匹配或关键词提取方法暴露出明显局限性——规则维护成本呈指数级增长、语义理解能力不足、难以应对句式变化等问题,使得构建一个鲁棒性强、可扩展的参数提取框架成为学术界和工业界共同关注的焦点。
5/27/2025 3:23:00 AM
大模型之路
面向语音控制前端应用程序的自然语言处理(NLP):架构、进展与未来方向
译者 | 李睿审校 | 重楼由于智能设备、虚拟助手和免提界面的日益普及,语音控制前端应用程序获得了更多的关注。 自然语言处理(NLP)是这些系统的核心,能够实现类似人类的理解和语音生成。 本白皮书介绍了语音控制前端应用程序的NLP方法的深入研究,阐述了语音识别、自然语言理解和生成技术的最新技术,以及它们在现代Web前端中的架构集成。
1/14/2025 9:47:44 AM
李睿
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用