逆向蛋白质折叠
港中大&之江实验室&华为&南医大提出逆向蛋白质折叠设计模型 ProRefiner
编辑 | 紫罗逆向蛋白质折叠(Inverse Protein Folding,IPF)是蛋白质设计的一项重要任务,其目的是设计与给定主链结构兼容的序列。尽管该任务的算法发展迅速,但现有方法在生成序列时往往依赖于位于局部邻域的噪声预测残基。为了解决这个限制,来自香港中文大学、之江实验室、华为诺亚方舟实验室和南京医科大学的研究团队,提出了一种基于熵的残差选择方法来消除输入残差上下文中的噪声。此外,研究还引入了 ProRefiner——一种内存高效(memory-efficient)的全局图注意力模型,可以充分利用去噪上
11/20/2023 12:09:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
生成
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
亚马逊
视觉
Transformer
AI模型
预测
特斯拉
MCP