MultiCogEval
ICML2025|清华医工平台提出大模型「全周期」医学能力评测框架MultiCogEval
本文工作由清华大学电子系医工交叉平台吴及教授和刘喜恩助理研究员所领导的医学自然语言处理团队,联合北邮、科大讯飞、无问芯穹等单位共同完成。 第一作者周宇轩为清华大学电子工程系博士生,其研究方向聚焦于大模型的医疗垂类能力评估与优化,此前已提出 MultifacetEval(IJCAI 2024)与 PretexEval(ICLR 2025)等医学知识掌握的多面动态评估框架体系。 吴及教授和刘喜恩助理研究员所领导的医学自然语言处理团队长期致力于面向真实需求驱动的医工交叉前沿技术研究与产业变革,曾在 2017 年联合科大讯飞研发了首个以 456 分高分通过国家临床执业医师资格考试综合笔试测试 AI 引擎 Med3R(Nature Communications 2018)并在全国 400 多个区县服务于基层医疗;2021 年联合惠及智医研发了首个基于全病历内容分析的智慧医保 AI 审核引擎,获得国家医保局智慧医保大赛一等奖,并在全国多个省市进行示范应用。
7/23/2025 10:30:00 AM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
人形机器人
生成式
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
GPU
生成
字节跳动
工具
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉