MSGNN
代谢数据集上四项指标达94%~98%,西南交大团队开发多尺度图神经网络框架,助力药物研发
作者 | 刘悦睿编辑 | 红菜苔药物研发过程中,了解分子与代谢路径之间的关系,对于合成新分子和优化药物代谢机制至关重要。西南交通大学杨燕/江永全团队开发了一种新型的多尺度图神经网络框架MSGNN,来将化合物与代谢路径联系起来。它包括特征编码器、子图编码器和全局特征处理器三部分,分别学习了原子特征、子结构特征和额外的全局分子特征,这三个尺度的特征可赋予模型更全面的信息。该框架在 KEGG 代谢路径数据集上的表现优于现有方法,Accuracy、Precision、Recall、F1分别达到98.17%、94.18%、9
2/2/2024 3:10:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用