MIT CSAIL
从未见过现实世界数据,MIT在虚拟环境中训练出机器狗,照样能跑酷
如今,机器人学习最大的瓶颈是缺乏数据。 与图片和文字相比,机器人的学习数据非常稀少。 目前机器人学科的主流方向是通过扩大真实世界中的数据收集来尝试实现通用具身智能,但是和其他的基础模型,比如初版的 StableDiffusion 相比,即使是 pi 的数据都会少七八个数量级。
11/17/2024 3:15:00 PM
机器之心
无限生成视频,还能规划决策,扩散强制整合下一token预测与全序列扩散
当前,采用下一 token 预测范式的自回归大型语言模型已经风靡全球,同时互联网上的大量合成图像和视频也早已让我们见识到了扩散模型的强大之处。近日,MIT CSAIL 的一个研究团队(一作为 MIT 在读博士陈博远)成功地将全序列扩散模型与下一 token 模型的强大能力统合到了一起,提出了一种训练和采样范式:Diffusion Forcing(DF)。论文标题:Diffusion Forcing:Next-token Prediction Meets Full-Sequence Diffusion论文地址:::,
7/23/2024 11:04:00 AM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用