描述
基于广义 Onsager 原理的 AI 平台,构建自定义热力学
编辑 | 绿萝基于先前积累的数据和已知物理原理的自动化科学发现,是人工智能最令人兴奋的应用之一,这种自动化的假设创建和验证可以帮助科学家研究复杂的现象,而传统的物理直觉可能会失败。近日,来自新加坡国立大学、新加坡科技研究局(A*STAR)、南洋理工大学和中国科学院的研究团队,开发了一个基于广义 Onsager 原理的人工智能平台:S-OnsagerNet,可以直接从对任意随机耗散系统的微观轨迹的观察中学习其宏观动力学描述。该方法同时构建了简化的热力学坐标,并解释这些坐标上的动力学。研究人员通过理论研究和实验验证长聚
2/15/2024 3:22:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉