MGPO
突破高分辨率图像推理瓶颈,复旦联合南洋理工提出基于视觉Grounding的多轮强化学习框架MGPO
本文的主要作者来自复旦大学和南洋理工大学 S-Lab,研究方向聚焦于视觉推理与强化学习优化。 先进的多模态大模型(Large Multi-Modal Models, LMMs)通常基于大语言模型(Large Language Models, LLMs)结合原生分辨率视觉 Transformer(NaViT)构建。 然而,这类模型在处理高分辨率图像时面临瓶颈:高分辨率图像会转化为海量视觉 Token,其中大部分与任务无关,既增加了计算负担,也干扰了模型对关键信息的捕捉。
7/21/2025 1:14:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
英伟达
Anthropic
智能体
代码
算法
Stable Diffusion
训练
芯片
开发者
蛋白质
腾讯
生成式
苹果
LLM
神经网络
AI新词
Claude
3D
研究
生成
机器学习
AI for Science
xAI
计算
人形机器人
Sora
Agent
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
RAG
大型语言模型
预测
具身智能
深度学习
伟达
视觉
Transformer
神器推荐
AGI
亚马逊
视频生成
Copilot
DeepMind
模态
架构
LLaMA