meta-expert framework
南大周志华团队最新力作:一个算法通吃所有,在线学习迎来新范式?
世界是动态变化的。 为了理解这个动态变化的世界并在其中运行,AI 模型必须具备在线学习能力。 为此,该领域提出了一种新的性能指标 —— 适应性遗憾值(adaptive regret),其定义为任意区间内的最大静态遗憾值。
8/5/2025 1:28:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
微软
智能
AI新词
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Claude
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
大语言模型
生成
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
视觉
Transformer
预测
亚马逊
AI模型
MCP
伟达