AI在线 AI在线

MachineLearningLM

从少样本到千样本!MachineLearningLM给大模型上下文学习装上「机器学习引擎」

尽管大型语言模型(LLM)拥有广泛的世界知识和强大的推理能力,被广泛视为优秀的少样本学习者,但在处理需要大量示例的上下文学习(ICL)时仍存在明显局限。 已有工作表明,即使提供多达上百甚至上千条示例,LLM 仍难以从中有效学习规律,其表现往往很快进入平台期,甚至对示例的顺序、标签偏差等较为敏感。 在利用上下文学习解决新任务时,LLM 往往更依赖于自身的强先验以及示例的表面特征,而难以真正挖掘出示例中潜在的因果机制或统计依赖。
9/16/2025 1:19:00 PM
机器之心
  • 1