LucidSim
从未见过现实世界数据,MIT在虚拟环境中训练出机器狗,照样能跑酷
如今,机器人学习最大的瓶颈是缺乏数据。 与图片和文字相比,机器人的学习数据非常稀少。 目前机器人学科的主流方向是通过扩大真实世界中的数据收集来尝试实现通用具身智能,但是和其他的基础模型,比如初版的 StableDiffusion 相比,即使是 pi 的数据都会少七八个数量级。
11/17/2024 3:15:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
ChatGPT
DeepSeek
AI绘画
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
微软
学习
GPT
Meta
图像
AI创作
技术
Gemini
论文
马斯克
Stable Diffusion
算法
芯片
代码
生成式
蛋白质
英伟达
腾讯
神经网络
研究
Anthropic
开发者
3D
计算
Sora
机器学习
AI设计
AI for Science
GPU
AI视频
苹果
场景
华为
百度
人形机器人
预测
搜索
Claude
伟达
训练
深度学习
生成
xAI
Transformer
大语言模型
字节跳动
模态
具身智能
文本
驾驶
神器推荐
智能体
Copilot
LLaMA
视觉
算力
安全
应用
视频生成
干货合集
API
大型语言模型
亚马逊
科技