Long Input Fine-Tuning
北大团队提出LIFT:将长上下文知识注入模型参数,提升大模型长文本能力
机构: 北京大学人工智能研究院 北京通用人工智能研究院作者: 毛彦升 徐宇飞 李佳琪 孟繁续 杨昊桐 郑子隆 王希元 张牧涵长文本任务是当下大模型研究的重点之一。 在实际场景和应用中,普遍存在大量长序列(文本、语音、视频等),有些甚至长达百万级 tokens。 扩充模型的长文本能力不仅意味着可以在上下文窗口中装入更长的文本,更是能够更好地建模文本段落间信息的长程依赖关系,增强对长文的阅读理解和推理。
3/17/2025 2:42:00 PM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
字节跳动
工具
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉