LocalMapper
准确率达100%,「人机交互」机器学习,驱动有机反应精确原子映射研究
编辑 | X原子到原子映射(Atom-to-atom Mapping,AAM)是识别化学反应前后分子中每个原子位置的任务,这对于理解反应机理非常重要。近年来,越来越多的机器学习模型用于逆合成和反应结果预测,这些模型的质量高度依赖于反应数据集中 AAM 的质量。虽然有一些算法使用图论或无监督学习来标记反应数据集的 AAM,但现有方法是基于子结构 alignments 而不是化学知识来映射原子。在此,来自韩国首尔大学(Seoul National University)和韩国科学技术院(KAIST)的研究团队,提出了一
4/3/2024 5:30:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
特斯拉
场景
深度学习
亚马逊
架构
Transformer
MCP
Copilot
编程
视觉