LocalMapper
准确率达100%,「人机交互」机器学习,驱动有机反应精确原子映射研究
编辑 | X原子到原子映射(Atom-to-atom Mapping,AAM)是识别化学反应前后分子中每个原子位置的任务,这对于理解反应机理非常重要。近年来,越来越多的机器学习模型用于逆合成和反应结果预测,这些模型的质量高度依赖于反应数据集中 AAM 的质量。虽然有一些算法使用图论或无监督学习来标记反应数据集的 AAM,但现有方法是基于子结构 alignments 而不是化学知识来映射原子。在此,来自韩国首尔大学(Seoul National University)和韩国科学技术院(KAIST)的研究团队,提出了一
4/3/2024 5:30:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
ChatGPT
DeepSeek
AI绘画
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
微软
学习
GPT
Meta
图像
AI创作
技术
Gemini
论文
马斯克
Stable Diffusion
算法
芯片
代码
生成式
蛋白质
英伟达
腾讯
神经网络
研究
Anthropic
开发者
3D
计算
Sora
机器学习
AI设计
AI for Science
GPU
AI视频
苹果
场景
华为
百度
人形机器人
预测
搜索
Claude
伟达
训练
深度学习
生成
xAI
Transformer
大语言模型
字节跳动
模态
具身智能
文本
驾驶
智能体
神器推荐
Copilot
LLaMA
视觉
算力
安全
应用
视频生成
干货合集
API
大型语言模型
亚马逊
科技