类别
Nature|从1.07亿个分子中发现新抗菌化合物,MIT团队开发用于抗生素发现的DL方法
编辑 | 萝卜皮当前,迫切需要发现新结构类别的抗生素来解决持续存在的抗生素耐药性危机。深度学习方法有助于探索化学空间;这些通常使用黑盒模型并且不提供化学见解。麻省理工学院(MIT)的研究人员开发了一种用于抗生素发现的深度学习方法,并表明它可以从大型化学库中识别出潜在的抗生素。研究人员用该方法从药物再利用中心(包含约 6,000 个分子)中发现了 halicin 和 abaucin,并从 ZINC15 库中的约 1.07 亿个分子中发现了新的抗菌化合物。图示:Yann LeCun 转发了这项研究的 Twitter 报
12/22/2023 3:20:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用