LACL
实现量子化学精度,同时规避几何弛豫瓶颈,深度对比学习用于分子性质有效预测
编辑 | 紫罗数据驱动的深度学习算法可以准确预测高级量子化学分子特性。然而,它们的输入必须限制在与训练数据集相同的量子化学几何弛豫水平,从而限制了它们的灵活性。采用替代的经济有效的构象生成方法会引入域偏移(domain-shift)问题,从而降低预测精度。近日,来自韩国首尔大学的研究人员提出了一种基于深度对比学习的域适应(domain-adaptation)方法,称为局部原子环境对比学习(Local Atomic environment Contrastive Learning,LACL)。LACL 通过比较不同的
12/14/2023 1:54:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind