LACL
实现量子化学精度,同时规避几何弛豫瓶颈,深度对比学习用于分子性质有效预测
编辑 | 紫罗数据驱动的深度学习算法可以准确预测高级量子化学分子特性。然而,它们的输入必须限制在与训练数据集相同的量子化学几何弛豫水平,从而限制了它们的灵活性。采用替代的经济有效的构象生成方法会引入域偏移(domain-shift)问题,从而降低预测精度。近日,来自韩国首尔大学的研究人员提出了一种基于深度对比学习的域适应(domain-adaptation)方法,称为局部原子环境对比学习(Local Atomic environment Contrastive Learning,LACL)。LACL 通过比较不同的
12/14/2023 1:54:00 PM
ScienceAI
- 1
资讯热榜
苹果发布全新Xcode 26开发者工具:内置ChatGPT先进AI功能
豆包App“一句话P图”功能全新升级 基于SeedEdit 3.0实现全面优化
DeepSeek前高管秘密创业,新AI Agent项目已获顶级VC押注
苹果向开发者开放本地AI能力,推出全新Foundation Models框架
支持MCP!开源智能体开发框架 Rowboat:打造你的智能助手只需几分钟
Microsoft Releases 700 Real AI Cases to Explore New Intelligent Work Models
苹果将 ChatGPT 和其他 AI 模型引入 Xcode
Grok接管推特算法!小号也能爆红,新人起号迎来黄金时代?
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
GPT
Meta
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
Claude
AI设计
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
LLM
字节跳动
Transformer
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构