扩展定律
从80个模型中构建Scaling Law:华人博士生新作,思维链提出者力荐
在 AI 领域,扩展定律(Scaling laws)是理解 LM 扩展趋势的强大工具,其为广大研究者提供了一个准则,该定律在理解语言模型的性能如何随规模变化提供了一个重要指导。但不幸的是,扩展分析在许多基准测试和后训练研究中并不常见,因为大多数研究人员没有计算资源来从头开始构建扩展法则,并且开放模型的训练尺度太少,无法进行可靠的扩展预测。来自斯坦福大学、多伦多大学等机构的研究者提出了一种替代观察法:可观察的扩展定律(Observational Scaling Laws),其将语言模型 (LM) 的功能与跨多个模型系
5/24/2024 3:01:00 PM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
腾讯
Agent
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
生成式
人形机器人
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
字节跳动
工具
华为
AGI
计算
大型语言模型
AI设计
搜索
生成式AI
视频生成
亚马逊
DeepMind
AI模型
特斯拉
场景
深度学习
Transformer
架构
MCP
Copilot
编程
视觉