扩展定律
从80个模型中构建Scaling Law:华人博士生新作,思维链提出者力荐
在 AI 领域,扩展定律(Scaling laws)是理解 LM 扩展趋势的强大工具,其为广大研究者提供了一个准则,该定律在理解语言模型的性能如何随规模变化提供了一个重要指导。但不幸的是,扩展分析在许多基准测试和后训练研究中并不常见,因为大多数研究人员没有计算资源来从头开始构建扩展法则,并且开放模型的训练尺度太少,无法进行可靠的扩展预测。来自斯坦福大学、多伦多大学等机构的研究者提出了一种替代观察法:可观察的扩展定律(Observational Scaling Laws),其将语言模型 (LM) 的功能与跨多个模型系
5/24/2024 3:01:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
论文
Anthropic
英伟达
代码
训练
算法
Stable Diffusion
芯片
LLM
AI新词
蛋白质
开发者
腾讯
生成式
Claude
苹果
Agent
AI for Science
神经网络
3D
机器学习
研究
生成
人形机器人
xAI
AI视频
计算
Sora
百度
GPU
AI设计
华为
工具
大语言模型
搜索
具身智能
RAG
字节跳动
场景
大型语言模型
深度学习
预测
伟达
视觉
Transformer
视频生成
AGI
架构
神器推荐
亚马逊
Copilot
DeepMind
特斯拉
应用