扩散大语言模型
token危机解决?扩散模型数据潜力3倍于自回归,重训480次性能仍攀升
token 危机终于要不存在了吗? 近日,新加坡国立大学 AI 研究者 Jinjie Ni 及其团队向着解决 token 危机迈出了关键一步。 在当前大语言模型(LLM)的持续发展中,面临的挑战之一是可用的高质量训练文本数据(tokens)即将枯竭,并成为限制模型性能持续提升的关键瓶颈。
8/10/2025 1:12:00 PM
机器之心
扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节
随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。 但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。 为了解决这一本质的问题,香港中文大学 MMLab,上海 AI 实验室等提出 DAEDAL,赋予 DLLM 可以根据问题的具体情况自主调整回答长度的能力,弥补了 DLLM 与自回归 LLM 的关键差距,为更灵活、高效、强大的扩散大语言模型打下了基石。
8/8/2025 6:20:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
代码
LLM
算法
芯片
Stable Diffusion
腾讯
苹果
AI for Science
Agent
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
研究
人形机器人
生成
AI视频
百度
工具
RAG
大语言模型
Sora
华为
GPU
计算
具身智能
AI设计
字节跳动
搜索
大型语言模型
AGI
场景
深度学习
视频生成
架构
预测
视觉
DeepMind
伟达
Transformer
编程
AI模型
神器推荐
亚马逊
MCP