KPGT
改进分子表征学习,清华团队提出知识引导的图 Transformer 预训练框架
编辑 | 紫罗学习有效的分子特征表征以促进分子特性预测,对于药物发现具有重要意义。最近,人们通过自监督学习技术预训练图神经网络(GNN)以克服分子特性预测中数据稀缺的挑战。然而,当前基于自监督学习的方法存在两个主要障碍:缺乏明确的自监督学习策略和 GNN 的能力有限。近日,来自清华大学、西湖大学和之江实验室的研究团队,提出了知识引导的图 Transformer 预训练(Knowledge-guided Pre-training of Graph Transformer,KPGT),这是一种自监督学习框架,通过显著增
11/23/2023 3:55:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
英伟达
马斯克
Anthropic
图像
AI创作
训练
LLM
论文
代码
苹果
AI for Science
算法
Agent
腾讯
Claude
芯片
Stable Diffusion
具身智能
蛋白质
xAI
开发者
人形机器人
生成式
神经网络
机器学习
3D
AI视频
RAG
大语言模型
Sora
百度
研究
字节跳动
GPU
生成
工具
华为
AGI
计算
大型语言模型
AI设计
生成式AI
搜索
视频生成
亚马逊
AI模型
DeepMind
特斯拉
场景
深度学习
Transformer
架构
Copilot
MCP
编程
视觉