KPGT
改进分子表征学习,清华团队提出知识引导的图 Transformer 预训练框架
编辑 | 紫罗学习有效的分子特征表征以促进分子特性预测,对于药物发现具有重要意义。最近,人们通过自监督学习技术预训练图神经网络(GNN)以克服分子特性预测中数据稀缺的挑战。然而,当前基于自监督学习的方法存在两个主要障碍:缺乏明确的自监督学习策略和 GNN 的能力有限。近日,来自清华大学、西湖大学和之江实验室的研究团队,提出了知识引导的图 Transformer 预训练(Knowledge-guided Pre-training of Graph Transformer,KPGT),这是一种自监督学习框架,通过显著增
11/23/2023 3:55:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind