kcat
降低预测误差,中国科学院团队开发用于预测酶动力学参数的统一框架
编辑 | 萝卜皮酶动力学参数的预测对于设计和优化各种生物技术和工业应用的酶至关重要,但当前预测工具在各种任务上的有限性能阻碍了它们的实际应用。中国科学院的研究人员开发了 UniKP,一个基于预训练语言模型的统一框架,用于预测酶动力学参数,包括来自蛋白质序列和底物结构的酶周转数 (kcat)、米氏常数 (Km) 和催化效率 (kcat / Km)。还提出了源自 UniKP (EF-UniKP) 的两层框架,从而允许在考虑环境因素(包括 pH 值和温度)时进行稳健的 kcat 预测。并且,该团队系统地探索了四种有代表性
1/3/2024 11:54:00 AM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
论文
英伟达
Anthropic
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
LLM
生成式
苹果
Claude
Agent
AI新词
神经网络
3D
AI for Science
机器学习
研究
生成
xAI
人形机器人
AI视频
计算
Sora
GPU
AI设计
百度
华为
工具
大语言模型
搜索
具身智能
场景
RAG
字节跳动
大型语言模型
预测
深度学习
伟达
视觉
Transformer
视频生成
AGI
神器推荐
亚马逊
架构
Copilot
DeepMind
应用
安全