抗癌
促进癌症治疗,之江实验室团队开发端到端深度学习模型 DeepAEG
编辑 | 白菜叶由于药物疗效的不确定性和患者的异质性,癌症药物反应的预测是现代个性化癌症治疗中的一个具有挑战性的课题。而且,药物本身的特性和患者的基因组特征可以极大地影响癌症药物反应的结果。因此,准确、高效、全面的药物特征提取和基因组学整合方法对于提高预测精度至关重要。之江实验室的研究团队提出了一种名为 DeepAEG 的端到端深度学习模型,它基于完整图更新模式来预测 IC50 值。并且,研究人员提出了一种新方法,通过采用序列重组来增强简化的分子输入行输入规范数据,从而消除药物分子单一序列表示的缺陷。DeepAEG
3/27/2024 6:50:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
代码
Anthropic
英伟达
算法
Stable Diffusion
芯片
智能体
训练
开发者
生成式
腾讯
蛋白质
苹果
AI新词
神经网络
3D
研究
生成
Claude
机器学习
LLM
计算
Sora
AI设计
AI for Science
AI视频
GPU
xAI
人形机器人
百度
华为
搜索
大语言模型
场景
Agent
字节跳动
预测
深度学习
伟达
工具
大型语言模型
Transformer
RAG
视觉
神器推荐
模态
Copilot
亚马逊
具身智能
LLaMA
文本
算力
驾驶
DeepMind