抗癌
促进癌症治疗,之江实验室团队开发端到端深度学习模型 DeepAEG
编辑 | 白菜叶由于药物疗效的不确定性和患者的异质性,癌症药物反应的预测是现代个性化癌症治疗中的一个具有挑战性的课题。而且,药物本身的特性和患者的基因组特征可以极大地影响癌症药物反应的结果。因此,准确、高效、全面的药物特征提取和基因组学整合方法对于提高预测精度至关重要。之江实验室的研究团队提出了一种名为 DeepAEG 的端到端深度学习模型,它基于完整图更新模式来预测 IC50 值。并且,研究人员提出了一种新方法,通过采用序列重组来增强简化的分子输入行输入规范数据,从而消除药物分子单一序列表示的缺陷。DeepAEG
3/27/2024 6:50:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
开源
智能
Meta
微软
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
Anthropic
代码
英伟达
算法
Stable Diffusion
智能体
训练
芯片
开发者
蛋白质
生成式
腾讯
苹果
AI新词
神经网络
3D
Claude
LLM
研究
生成
机器学习
计算
AI for Science
Sora
人形机器人
AI视频
xAI
AI设计
GPU
华为
百度
搜索
大语言模型
Agent
场景
字节跳动
预测
大型语言模型
深度学习
伟达
工具
Transformer
视觉
RAG
具身智能
神器推荐
亚马逊
Copilot
模态
AGI
LLaMA
文本
算力
驾驶