聚变
可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
编辑 | X几十年来,核聚变释放能量的「精妙」过程一直吸引着科学家们的研究兴趣。现在,在普林斯顿等离子体物理实验室(PPPL)中 ,科学家正借助人工智能,来解决人类面临的紧迫挑战:通过聚变等离子体产生清洁、可靠的能源。与传统的计算机代码不同,机器学习不仅仅是指令列表,它可以分析数据、推断特征之间的关系、从新知识中学习并适应。PPPL 研究人员相信,这种学习和适应能力可以通过多种方式改善他们对聚变反应的控制。这包括完善超热等离子体周围容器的设计、优化加热方法以及在越来越长的时间内保持反应的稳定控制。近日,PPPL 的
5/22/2024 7:20:00 PM
ScienceAI
快速筛选海量数据,即时做出明智决策,MIT、普林斯顿&卡内基梅隆大学团队利用LLM进行聚变研究
编辑 | X可控核聚变能具有安全、清洁、燃料丰富等优点,是解决人类未来能源问题的主要选择之一。也许最有前途的核聚变装置是托卡马克(Tokamak)。尽管前景光明,但在人类和经济型托卡马克发电厂之间仍然存在重要的悬而未决的问题。自核聚变研究开始以来,科学家们已经发表了数千份有关该主题的文件——论文、会议记录,甚至是世界各地聚变反应堆先前实验的书面日志。这样的信息源泉可能需要用一辈子的时间来阅读,甚至需要更长的时间来理解。然而,在圣地亚哥 DIII-D 国家聚变设施进行的实际聚变实验中,研究人员在两次试验之间只有大约
1/4/2024 6:55:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用