晶体结构
数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science
编辑 | KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法 PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅 2 埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的 10% 到 20%,而传统的从头算方法通
8/8/2024 3:31:00 PM
ScienceAI
图神经网络准确预测无机化合物性质,加速固态电池的设计
编辑/绿萝大规模从头计算与结构预测的进步相结合,在无机功能材料的发现中发挥了重要作用。目前,在无机材料的广阔化学空间中,只发现了一小部分。实验和计算研究人员都需要加速探索未知的化学空间。来自美国国家可再生能源实验室(NREL)、科罗拉多矿业学院和伊利诺伊大学的研究人员展示了一种可以准确预测无机化合物性质的机器学习方法。展示了基态(GS)和更高能量结构的平衡训练数据集,对使用通用图神经网络(GNN)架构准确预测总能量的重要性。该研究可加速固态电池的设计。该研究以「Predicting energy and stabi
12/24/2021 11:19:00 AM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP