静态
中国科学院开发出基于语义记忆的动态神经网络:相比静态最高减少 48.1% 计算量
中国科学院微电子研究所等将人工神经网络与大脑的动态可重构性相结合,开发出基于语义记忆的动态神经网络。▲ 基于语义记忆的脑启发动态神经网络硬件软件协同设计大脑神经网络具有复杂的语义记忆和动态连接性,可将不断变化的输入与庞大记忆中的经验联系起来,高效执行复杂多变的任务。目前,人工智能系统广泛应用的神经网络模型多是静态的。随着数据量不断增长,它在传统数字计算系统中产生大量能耗和时间开销,难以适应外界环境的变化。与静态网络相比,语义记忆动态神经网络能够根据计算资源权衡识别准确性和计算效率,可在资源受限设备或分布式计算环境中
9/1/2024 6:21:57 PM
沛霖(实习)
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用