结构
图神经网络准确预测无机化合物性质,加速固态电池的设计
编辑/绿萝大规模从头计算与结构预测的进步相结合,在无机功能材料的发现中发挥了重要作用。目前,在无机材料的广阔化学空间中,只发现了一小部分。实验和计算研究人员都需要加速探索未知的化学空间。来自美国国家可再生能源实验室(NREL)、科罗拉多矿业学院和伊利诺伊大学的研究人员展示了一种可以准确预测无机化合物性质的机器学习方法。展示了基态(GS)和更高能量结构的平衡训练数据集,对使用通用图神经网络(GNN)架构准确预测总能量的重要性。该研究可加速固态电池的设计。该研究以「Predicting energy and stabi
12/24/2021 11:19:00 AM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP