健康状况
如何通过机器学习算法,将EV电池运用到极致?
编译 / 刘梦婷近日,剑桥大学的研究人员开发了一种机器学习算法,可以通过预测不同的驾驶模式对电池性能的影响,帮助电动车减少充电时间,延长电池寿命,提高安全性和可靠性。研究结果发表在《自然通讯》(Nature Communications)杂志上。该团队开发了一种非侵入式方法来检测电池,并获得电池整体健康状况。然后,将这些结果输入机器学习算法,该算法可以预测不同驾驶模式将如何影响电池未来的健康状况。研究人员表示,该算法可以通过建议路线和驾驶模式,最大限度地减少电池退化和充电时间,来充分利用电动汽车的电池。如果将其用于
8/25/2022 12:48:00 PM
机器智行
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind