疾病
AI成像新标准,仅1%原始数据可达最佳性能,通用医学基础模型登Nature子刊
编辑 | 白菜叶经过大规模预训练的基础模型已在非医学领域取得了巨大成功。然而,训练这些模型通常需要大量全面的数据集,这与生物医学成像中常见的较小且更专业的数据集形成鲜明对比。德国弗劳恩霍夫数字医学研究所(Fraunhofer Institute for Digital Medicine MEVIS)的研究人员提出了一种多任务学习策略,将训练任务数量与内存需求分离开来。他们在多任务数据库(包括断层扫描、显微镜和 X 射线图像)上训练了一个通用生物医学预训练模型 (UMedPT),并采用了各种标记策略,例如分类、分割和
7/22/2024 12:22:00 PM
ScienceAI
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
本文是对发表于计算机视觉和模式识别领域的顶级会议 CVPR 2021的论文“Causal Hidden Markov Model for Time Series Disease Forecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。
该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于 VAE 的变分框架进行学习。通过对图像隐空间进行解耦,去除疾病无关因子与疾病预测的伪相关关系,从而提高预测的准确率和鲁棒性。
7/18/2022 5:03:00 PM
北京大学前沿计算研究中心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
AI设计
Claude
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
Transformer
LLM
字节跳动
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构