Intel Labs
用神经架构搜索给LLM瘦身,模型变小,准确度有时反而更高
用神经架构搜索给 LLM 瘦身,同等准确度可让 LLaMA2-7B 模型大小降 2 倍。大型语言模型(LLM)的一个主要特点是「大」,也因此其训练和部署成本都相当高,如何在保证 LLM 准确度的同时让其变小就成了非常重要且有价值的研究课题。对此,研究社区已经提出了多种多样的方法,比如剪枝、稀疏化、量化等,它们的效果也各不一样。近日,Intel Labs 发布了一项研究成果,宣称可使用神经架构搜索(NAS)高效地为 LLM 「瘦身」。他们基于 LLaMA2-7B 模型的实验表明,该技术不仅能降低模型大小,有时甚至还能
6/11/2024 2:40:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
Anthropic
英伟达
代码
算法
训练
Stable Diffusion
芯片
蛋白质
开发者
腾讯
生成式
LLM
苹果
Claude
神经网络
AI新词
3D
研究
机器学习
生成
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
架构
模态
应用